Bombyx mori Pupae Efficiently Produce Recombinant AAV2/HBoV1 Vectors with a Bombyx mori Nuclear Polyhedrosis Virus Expression System

Author:

Yu QianORCID,Chang Pengfei,Liu Xiaoxuan,Lü Peng,Tang Qi,Guo Zhongjian,Qiu JianmingORCID,Chen KepingORCID,Yao Qin

Abstract

Recombinant adeno-associated virus (AAV) vectors have broad application prospects in the field of gene therapy. The establishment of low-cost and large-scale manufacturing is now the general agenda for industry. The baculovirus-insect cell/larva expression system has great potential for these applications due to its scalability and predictable biosafety. To establish a more efficient production system, Bombyx mori pupae were used as a new platform and infected with recombinant Bombyx mori nuclear polyhedrosis virus (BmNPV). The production of a chimeric recombinant adeno-associated virus (rAAV) serotype 2/human bocavirus type-1 (HBoV1) vector was used to evaluate the efficiency of this new baculovirus expression vector (BEV)–insect expression system. For this purpose, we constructed two recombinant BmNPVs, which were named rBmNPV/AAV2Rep-HBoV1Cap and rBmNPV/AAV2ITR-eGFP. The yields of rAAV2/HBoV1 derived from the rBmNPV/AAV2Rep-HBoV1Cap and rBmNPV/AAV2ITR-eGFP co-infected BmN cells exceeded 2 × 104 vector genomes (VG) per cell. The rBmNPV/AAV2Rep-HBoV1Cap and rBmNPV/AAV2ITR-eGFP can express stably for at least five passages. Significantly, rAAV2/HBoV1 could be efficiently generated from BmNPV-infected silkworm larvae and pupae at average yields of 2.52 × 1012 VG/larva and 4.6 × 1012 VG/pupa, respectively. However, the vectors produced from the larvae and pupae had a high percentage of empty particles, which suggests that further optimization is required for this platform in the future. Our work shows that silkworm pupae, as an efficient bioreactor, have great potential for application in the production of gene therapy vectors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3