Tracking the Seismic Deformation of Himalayan Glaciers Using Synthetic Aperture Radar Interferometry

Author:

Mondal Sandeep Kumar12,Bharti Rishikesh12ORCID,Tiampo Kristy F.3ORCID

Affiliation:

1. Technology Innovation Hub (TIH), Technology Innovation and Development Foundation (TIDF), Indian Institute of Technology, Guwahati 781039, Assam, India

2. Earth System Science and Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India

3. Department of Geological Sciences, University of Colorado Boulder, Boulder, CO 80309, USA

Abstract

The Himalayan belt, formed due to the Cenozoic convergence between the Eurasian and Indian craton, acts as a storehouse of large amounts of strain, resulting in large earthquakes from the Western to the Eastern Himalayas. Glaciers also occur over a major portion of the high-altitude Himalayan region. The impact of earthquakes can be easily studied in the plains and plateaus with the help of well-distributed seismogram networks and these regions’ accessibility is helpful for field- and lab-based studies. However, earthquakes triggered close to high-altitude Himalayan glaciers are tough to investigate for the impact over glaciers and glacial deposits. In this study, we attempt to understand the impact of earthquakes on and around Himalayan glaciers in terms of vertical displacement and coherence change using space-borne synthetic aperture radar (SAR). Eight earthquake events of various magnitudes and hypocenter depths occurring in the vicinity of Himalayan glacial bodies were studied using C-band Sentinel1-A/B SAR data. Differential interferometric SAR (DInSAR) analysis is applied to capture deformation of the glacial surface potentially related to earthquake occurrence. Glacial displacement varies from −38.9 mm to −5.4 mm for the 2020 Tibet earthquake (Mw 5.7) and the 2021 Nepal earthquake (Mw 4.1). However, small glacial and ground patches processed separately for vertical displacements reveal that the glacial mass shows much greater seismic displacement than the ground surface. This indicates the possibility of the presence of potential site-specific seismicity amplification properties within glacial bodies. A reduction in co-seismic coherence around the glaciers is observed in some cases, indicative of possible changes in the glacial moraine deposits and/or vegetation cover. The effect of two different seismic events (the 2020 and 2021 Nepal earthquakes) with different hypocenter depths but with the same magnitude at almost equal distances from the glaciers is assessed; a shallow earthquake is observed to result in a larger impact on glacial bodies in terms of vertical displacement. Earthquakes may induce glacial hazards such as glacial surging, ice avalanches, and the failure of moraine-/ice-dammed glacial lakes. This research may be able to play a possible role in identifying areas at risk and provide valuable insights for the planning and implementation of measures for disaster risk reduction.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3