PSA-FL-CDM: A Novel Federated Learning-Based Consensus Model for Post-Stroke Assessment

Author:

Razfar Najmeh1ORCID,Kashef Rasha1ORCID,Mohammadi Farah1

Affiliation:

1. Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada

Abstract

The rapid development of Internet of Things (IoT) technologies and the potential benefits of employing the vast datasets generated by IoT devices, including wearable sensors and camera systems, has ushered in a new era of opportunities for enhancing smart rehabilitation in various healthcare systems. Maintaining patient privacy is paramount in healthcare while providing smart insights and recommendations. This study proposed the adoption of federated learning to develop a scalable AI model for post-stroke assessment while protecting patients’ privacy. This research compares the centralized (PSA-MNMF) model performance with the proposed scalable federated PSA-FL-CDM model for sensor- and camera-based datasets. The computational time indicates that the federated PSA-FL-CDM model significantly reduces the execution time and attains comparable performance while preserving the patient’s privacy. Impact Statement—This research introduces groundbreaking contributions to stroke assessment by successfully implementing federated learning for the first time in this domain and applying consensus models in each node. It enables collaborative model training among multiple nodes or clients while ensuring the privacy of raw data. The study explores eight different clustering methods independently on each node, revolutionizing data organization based on similarities in stroke assessment. Additionally, the research applies the centralized PSA-MNMF consensus clustering technique to each client, resulting in more accurate and robust clustering solutions. By utilizing the FedAvg federated learning algorithm strategy, locally trained models are combined to create a global model that captures the collective knowledge of all participants. Comparative performance measurements and computational time analyses are conducted, facilitating a fair evaluation between centralized and federated learning models in stroke assessment. Moreover, the research extends beyond a single type of database by conducting experiments on two distinct datasets, wearable and camera-based, broadening the understanding of the proposed methods across different data modalities. These contributions develop stroke assessment methodologies, enabling efficient collaboration and accurate consensus clustering models and maintaining data privacy.

Funder

FEAS Funding

Publisher

MDPI AG

Reference40 articles.

1. Sozinov, K., Vlassov, V., and Girdzijauskas, S. (2018, January 11–13). Human Activity Recognition Using Federated Learning. Proceedings of the 2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), Melbourne, Australia.

2. Razfar, N., Kashef, R., and Mohammadi, F. (2021, January 20–22). A Comprehensive Overview on IoT-Based Smart Stroke Rehabilitation Using the Advances of Wearable Technology. Proceedings of the 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), Haikou, China.

3. An Artificial Intelligence Model for Smart Post-Stroke Assessment Using Wearable Sensors;Razfar;Decis. Anal. J.,2023

4. Razfar, N., Kashef, R., and Mohammadi, F. (2021, January 20–22). Assessing Stroke Patients Movements Using Inertial Measurements through the Advances of Ensemble Learning Technology. Proceedings of the 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), Haikou, China.

5. Mammen, P.M. (2021). Federated Learning: Opportunities and Challenges. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3