Affiliation:
1. School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China
2. School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China
3. College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
Abstract
As a high-quality building material exhibiting excellent toughness and durability, ultrahigh-performance concrete (UHPC) is increasingly being used in the construction industry and as building reinforcement. During the reinforcement of existing concrete structures with UHPC, their interface is the weakest part of a structure. Interface bonding ensures the operation of two types of materials together. However, existing studies rarely report the bonding of the UHPC–normal concrete (NC) interface. Herein, the existing test methods and interface bonding mechanisms are summarized. Subsequently, the differences among relevant design codes are investigated by comparing different theoretical formulas. Important influencing factors of the reinforcement method, namely, interface roughness, fiber type and content, interface agent type and content, moisture content, existing concrete strength, cementitious material content, curing conditions, freeze–thaw cycles, and chloride ions, are also considered. Further, the enhancement mechanism of the characteristics of the UHPC–NC interface is clearly described. Finally, the shortcomings and application prospects of the interfacial bonding properties are highlighted.
Funder
Sichuan Provincial Natural Science Foundation Project
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献