Mapping Cropland Extent in Pakistan Using Machine Learning Algorithms on Google Earth Engine Cloud Computing Framework

Author:

Latif Rana Muhammad Amir1ORCID,He Jinliao1ORCID,Umer Muhammad2

Affiliation:

1. The Center for Modern Chinese City Studies, Institute of Urban Development, East China Normal University, Shanghai 200062, China

2. Department of Computer Science, COMSATS University Islamabad, Islamabad 22060, Pakistan

Abstract

An actual cropland extent product with a high spatial resolution with a precision of up to 60 m is believed to be particularly significant in tackling numerous water security concerns and world food challenges. To advance the development of niche, advanced cropland goods such as crop variety techniques, crop intensities, crop water production, and crop irrigation, it is necessary to examine how cropland products typically span narrow or expansive farmlands. Some of the existing challenges are processing by constructing precision-high resolution cropland-wide items of training and testing data on diverse geographical locations and safe frontiers, computing capacity, and managing vast volumes of geographical data. This analysis includes eight separate Sentinel-2 multi-spectral instruments data from 2018 to 2019 (Short-wave Infrared Imagery (SWIR 2), SWIR 1, Cirrus, the near infrared, red, green, blue, and aerosols) have been used. Pixel-based classification algorithms have been employed, and their precision is measured and scrutinized in this study. The computations and analyses have been conducted on the cloud-based Google Earth Engine computing network. Training and testing data were obtained from the Google Earth Engine map console at a high spatial 10 m resolution for this analysis. The basis of research information for testing the computer algorithms consists of 855 training samples, culminating in a manufacturing field of 200 individual validation samples measuring product accuracy. The Pakistan cropland extent map produced in this study using four state-of-the-art machine learning (ML) approaches, Random Forest, SVM, Naïve Bayes & CART shows an overall validation accuracy of 82%, 89% manufacturer accuracy, and 77% customer accuracy. Among these four machine learning algorithms, the CART algorithm overperformed the other three, with an impressive classification accuracy of 93%. Pakistan’s average cropland areas were calculated to be 370,200 m2, and the cropland’s scale of goods indicated that sub-national croplands could be measured. The research offers a conceptual change in the development of cropland maps utilizing a remote sensing multi-date.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3