Space Flight Enhances Stress Pathways in Human Neural Stem Cells

Author:

Carpo Nicholas1,Tran Victoria1,Biancotti Juan Carlos2,Cepeda Carlos1,Espinosa-Jeffrey Araceli1

Affiliation:

1. Department of Psychiatry, UCLA, Los Angeles, CA 90095, USA

2. Department of Surgery, Division of Pediatric Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA

Abstract

Mammalian cells have evolved to function under Earth’s gravity, but how they respond to microgravity remains largely unknown. Neural stem cells (NSCs) are essential for the maintenance of central nervous system (CNS) functions during development and the regeneration of all CNS cell populations. Here, we examined the behavior of space (SPC)-flown NSCs as they readapted to Earth’s gravity. We found that most of these cells survived the space flight and self-renewed. Yet, some showed enhanced stress responses as well as autophagy-like behavior. To ascertain if the secretome from SPC-flown NSCs contained molecules inducing these responses, we incubated naïve, non-starved NSCs in a medium containing SPC-NSC secretome. We found a four-fold increase in stress responses. Proteomic analysis of the secretome revealed that the protein of the highest content produced by SPC-NSCs was secreted protein acidic and rich in cysteine (SPARC), which induces endoplasmic reticulum (ER) stress, resulting in the cell’s demise. These results offer novel knowledge on the response of neural cells, particularly NSCs, subjected to space microgravity. Moreover, some secreted proteins have been identified as microgravity sensing, paving a new venue for future research aiming at targeting the SPARC metabolism. Although we did not establish a direct relationship between microgravity-induced stress and SPARC as a potential marker, these results represent the first step in the identification of gravity sensing molecules as targets to be modulated and to design effective countermeasures to mitigate intracranial hypertension in astronauts using structure-based protein design.

Funder

NASA Space Biology Grant

NIH

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Omics Studies of Tumor Cells under Microgravity Conditions;International Journal of Molecular Sciences;2024-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3