Exosome-Related FTCD Facilitates M1 Macrophage Polarization and Impacts the Prognosis of Hepatocellular Carcinoma

Author:

Liu Youyi1,Tang Yifei1,Jiang Hongliang1,Zhang Xiading2,Chen Xingyi1,Guo Jingrou1,Jin Cheng3,Wu Minchen1

Affiliation:

1. Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China

2. Wuxi Higher Health Vocational Technology School, Wuxi 214000, China

3. Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi 214041, China

Abstract

Background: Exosomes are essential for hepatocellular carcinoma (HCC) progression and have garnered significant interest as novel targets for diagnostic, prognostic, and therapeutic approaches. This study aims to identify potential exosome-related biomarkers for the development of useful strategies for HCC diagnosis and therapy. Methods: Three datasets obtained from the Gene Expression Omnibus (GEO) were utilized to identify differentially expressed genes (DEGs) in HCC. Through Gene Ontology (GO) analysis and protein–protein interaction (PPI) network, overall survival (OS) analysis, Cox analyses, and diethylnitrosamine (DEN)-induced HCC mouse model detection, exosome-related hub gene was screened out, followed by a prognostic value assessment and immune-correlates analysis based on the Cancer Genome Atlas (TCGA) dataset. The hub gene-containing exosomes derived from Hepa1-6 cells were isolated and characterized using differential ultracentrifugation, transmission electron microscopy scanning, and Western blot. Ultrasound-guided intrahepatic injection, cell co-culture, CCK-8, and flow cytometry were performed to investigate the effects of the hub gene on macrophage infiltration and polarization in HCC. Results: A total of 83 DEGs enriched in the extracellular exosome term, among which, FTCD, HRA, and C8B showed the strongest association with the progression of HCC. FTCD was independently associated with a protective effect in HCC and selected as the hub gene. The presence of FTCD in exosomes was confirmed. FTCD-stimulated macrophages were polarized towards the M1 type and suppressed HCC cells proliferation. Conclusions: FTCD is a potential exosome-related biomarker for HCC diagnosis, prognosis, and treatment. The crosstalk between FTCD-containing exosomes and macrophages in HCC progression deserves further investigation.

Funder

Postdoctoral Science Foundation of China

“Taihu lake” science and technology project of Wuxi

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3