Challenges and Advancement of Blue III-Nitride Vertical-Cavity Surface-Emitting Lasers

Author:

Huang Chia-YenORCID,Hong Kuo-Bin,Huang Zhen-Ting,Hsieh Wen-Hsuan,Huang Wei-Hao,Lu Tien-Chang

Abstract

Since the first demonstration of (Al, In, Ga)N-based blue vertical-cavity surface-emitting lasers (VCSELs) in 2008, the maximum output power (Pmax) and threshold current density (Jth) has been improved significantly after a decade of technology advancements. This article reviewed the key challenges for the realization of VCSELs with III-nitride materials, such as inherent polarization effects, difficulties in distributed Bragg’s reflectors (DBR) fabrication for a resonant cavity, and the anti-guiding effect due to the deposited dielectrics current aperture. The significant tensile strain between AlN and GaN hampered the intuitive cavity design with two epitaxial DBRs from arsenide-based VCSELs. Therefore, many alternative cavity structures and processing technologies were developed; for example, lattice-matched AlInN/GaN DBR, nano-porous DBR, or double dielectric DBRs via various overgrowth or film transfer processing strategies. The anti-guiding effect was overcome by integrating a fully planar or slightly convex DBR as one of the reflectors. Special designs to limit the emission polarization in a circular aperture were also summarized. Growing VCSELs on low-symmetry non-polar and semipolar planes discriminates the optical gain along different crystal orientations. A deliberately designed high-contrast grating could differentiate the reflectivity between the transverse-electric field and transverse-magnetic field, which restricts the lasing mode to be the one with the higher reflectivity. In the future, the III-nitride based VCSEL shall keep advancing in total power, applicable spectral region, and ultra-low threshold pumping density with the novel device structure design and processing technologies.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3