Multi-Dimensional Global Temporal Predictive Model for Multi-State Prediction of Marine Diesel Engines

Author:

Ma Liyong1ORCID,Chen Siqi1,Jia Shuli2,Zhang Yong3,Du Hai1

Affiliation:

1. School of Information Science and Engineering, Harbin Institute of Technology, Weihai 264209, China

2. Automation Engineering Department, Shanghai Marine Diesel Engine Research Institute, Shanghai 201108, China

3. School of Ocean Engineering, Harbin Institute of Technology, Weihai 264209, China

Abstract

The reliability and stability of marine diesel engines are pivotal to the safety and economy of maritime operations. Accurate and efficient prediction of the states of these engines is essential for performance evaluation and operational continuity. This paper introduces a novel hybrid deep learning model, the multi-dimensional global temporal predictive (MDGTP) model, designed for synchronous multi-state prediction of marine diesel engines. The model incorporates parallel multi-head attention mechanisms, an enhanced long short-term memory (LSTM) with interleaved residual connections, and gated recurrent units (GRUs). Additionally, we propose a dynamic arithmetic tuna optimization algorithm, which synergizes tuna swarm optimization (TSO), and the arithmetic optimization algorithm (AOA) for hyperparameter optimization, thereby enhancing prediction accuracy. Comparative experiments using actual marine diesel engine data demonstrate that our model outperforms the LSTM, GRU, LSTM–GRU, support vector regression (SVR), random forest (RF), Gaussian process regression (GPR), and back propagation (BP) models, achieving the lowest root mean squared error (RMSE) and mean absolute error (MAE), as well as the highest Pearson correlation coefficient across three sampling periods. Ablation studies confirm the significance of each component in improving prediction accuracy. Our findings validate the efficacy of the proposed MDGTP model for predicting the multi-dimensional operating states of marine diesel engines.

Funder

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3