Postnatal Changes of Somatostatin Expression in Hippocampi of C57BL/6 Mice; Modulation of Neuroblast Differentiation in the Hippocampus

Author:

Yoo Dae Young1ORCID,Kim Woosuk2ORCID,Jung Hyo Young3,Hwang In Koo4ORCID

Affiliation:

1. Department of Anatomy and Convergence Medical Science, Institute of Health Science, Tyrosine Peptide Multiuse Research Group, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea

2. Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea

3. Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea

4. Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea

Abstract

(1) Background: Somatostatin (SST) exhibits expressional changes in the brain during development, but its role is not still clear in brain development. (2) Methods: We investigated postnatal SST expression and its effects on hippocampal neurogenesis via administering SST subcutaneously to P7 mice for 7 days. (3) Results: In the hippocampal CA1 region, SST immunoreactivity reaches peak at P14. However, SST immunoreactivity significantly decreased at P21. In the CA2/3 region, the SST expression pattern was similar to the CA1, and SST-immunoreactive cells were most abundant at P14. In the dentate gyrus, SST-immunoreactive cells were most abundant at P7 and P14 in the polymorphic layer; as in CA1-3 regions, the immunoreactivity decreased at P21. To elucidate the role of SST in postnatal development, we administered SST subcutaneously to P7 mice for 7 days. In the subgranular zone of the hippocampal dentate gyrus, a significant increase was observed in immunoreactivity of doublecortin (DCX)-positive neuroblast after administration of SST.; (4) Conclusions: SST expression in the hippocampal sub-regions is transiently increased during the postnatal formation of the hippocampus and decreases after P21. In addition, SST is involved in neuroblast differentiation in the dentate gyrus of the hippocampus.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3