The Impact of Bamboo Consumption on the Spread of Antibiotic Resistance Genes in Giant Pandas

Author:

Yan Zheng1234,He Xin123,Ayala James123,Xu Qin123,Yu Xiaoqiang123,Hou Rong123,Yao Ying123ORCID,Huang He123,Wang Hairui123ORCID

Affiliation:

1. Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China

2. Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China

3. Sichuan Academy of Giant Panda, Chengdu 610081, China

4. Key Laboratory for Biodiversity and Ecological Engineering of Ministry of Education, Department of Ecology, College of Life Sciences, Beijing Normal University, Beijing 100875, China

Abstract

The spread of antibiotic resistance genes (ARGs) in the environment exacerbates the contamination of these genes; therefore, the role plants play in the transmission of resistance genes in the food chain requires further research. Giant pandas consume different bamboo parts at different times, which provides the possibility of investigating how a single food source can affect the variation in the spread of ARGs. In this study, metagenomic analysis and the Comprehensive Antibiotic Resistance Database (CARD) database were used to annotate ARGs and the differences in gut microbiota ARGs during the consumption of bamboo shoots, leaves, and culms by captive giant pandas. These ARGs were then compared to investigate the impact of bamboo part consumption on the spread of ARGs. The results showed that the number of ARGs in the gut microbiota of the subjects was highest during the consumption of bamboo leaves, while the variety of ARGs was highest during the consumption of shoots. Escherichia coli, which poses a higher risk of ARG dissemination, was significantly higher in the leaf group, while Klebsiella, Enterobacter, and Raoultella were significantly higher in the shoot group. The ARG risk brought by bamboo shoots and leaves may originate from soil and environmental pollution. It is recommended to handle the feces of giant pandas properly and regularly monitor the antimicrobial and virulence genes in their gut microbiota to mitigate the threat of antibiotic resistance.

Funder

Sichuan Science and Technology Provincial Department

the independent project of Chengdu Research Base of Giant Panda Breeding

Publisher

MDPI AG

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3