Artificial Seaweed Substrates Complement ARMS in DNA Metabarcoding-Based Monitoring of Temperate Coastal Macrozoobenthos

Author:

Leite Barbara R.123ORCID,Duarte Sofia12ORCID,Troncoso Jesús S.34,Costa Filipe O.12ORCID

Affiliation:

1. Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

2. Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

3. UVIGO Marine Research Centre (CIM-UVIGO), ECIMAT Marine Station, Toralla Island, S/N, 36331 Vigo, Spain

4. Department of Ecology and Animal Biology, Marine Sciences Faculty, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain

Abstract

We used DNA metabarcoding to compare macrozoobenthic species colonization between autonomous reef monitoring structures (ARMS) and artificial seaweed monitoring systems (ASMS). We deployed both substrates in two different locations (Ría de Vigo and Ría de Ferrol, NW Iberian coast) and collected them after 6, 9, and 12 months to assess species composition of the colonizing communities through high-throughput sequencing of amplicons within the barcode region of the mitochondrial cytochrome c oxidase I (COI-5P) and the V4 domain of the 18S rRNA genes. We observed a consistently low similarity in species composition between substrate types, independently of sampling times and sites. A large fraction of exclusive species was recorded for a given substrate (up to 72%), whereas only up to 32% of species were recorded in both substrates. The shape and structural complexity of the substrate strongly affected the colonization preferences, with ASMS detecting more exclusive crustacean and gastropod species and a broader diversity of taxonomic groups (e.g., Entoprocta and Pycnogonida were detected exclusively in ASMS). We demonstrate that despite the customary use of ARMS for macrozoobenthos monitoring, by using ASMS we complemented the recovery of species and enlarged the scope of the taxonomic diversity recorded.

Funder

ATLANTIDA

Programa Operacional Regional do Norte

FCT I.P.

BRL

SD

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3