Assessment of Diagnosis, Prognosis and Immune Infiltration Response to the Expression of the Ferroptosis-Related Molecule HAMP in Clear Cell Renal Cell Carcinoma

Author:

Leng JingORCID,Xing ZixuanORCID,Li Xiang,Bao XinyueORCID,Zhu JunzheyaORCID,Zhao YunhanORCID,Wu ShaoboORCID,Yang JiaoORCID

Abstract

Background. Hepcidin antimicrobial peptide (HAMP) is a key factor in maintaining iron metabolism, which may induce ferroptosis when upregulated. However, its prognostic value and relation to immune infiltrating cells remains unclear. Methods. This study analyzed the expression levels of HAMP in the Oncomine, Timer and Ualcan databases, and examined its prognostic potential in KIRC with R programming. The Timer and GEPIA databases were used to estimate the correlations between HAMP and immune infiltration and the markers of immune cells. The intersection genes and the co-expression PPI network were constructed via STRING, R programming and GeneMANIA, and the hub genes were selected with Cytoscape. In addition, we analyzed the gene set enrichment and GO/KEGG pathways by GSEA. Results. Our study revealed higher HAMP expression levels in tumor tissues including KIRC, which were related to poor prognosis in terms of OS, DSS and PFI. The expression of HAMP was positively related to the immune infiltration level of macrophages, Tregs, etc., corresponding with the immune biomarkers. Based on the intersection genes, we constructed the PPI network and used the 10 top hub genes. Further, we performed a pathway enrichment analysis of the gene sets, including Huntington’s disease, the JAK-STAT signaling pathway, ammonium ion metabolic process, and so on. Conclusion. In summary, our study gave an insight into the potential prognosis of HAMP, which may act as a diagnostic biomarker and therapeutic target related to immune infiltration in KIRC.

Funder

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3