Prediction of Multiple Clinical Complications in Cancer Patients to Ensure Hospital Preparedness and Improved Cancer Care

Author:

Padmanabhan ReginaORCID,Elomri AdelORCID,Taha Ruba Yasin,El Omri Halima,Elsabah Hesham,El Omri AbdelfattehORCID

Abstract

Reliable and rapid medical diagnosis is the cornerstone for improving the survival rate and quality of life of cancer patients. The problem of clinical decision-making pertaining to the management of patients with hematologic cancer is multifaceted and intricate due to the risk of therapy-induced myelosuppression, multiple infections, and febrile neutropenia (FN). Myelosuppression due to treatment increases the risk of sepsis and mortality in hematological cancer patients with febrile neutropenia. A high prevalence of multidrug-resistant organisms is also noted in such patients, which implies that these patients are left with limited or no-treatment options amidst severe health complications. Hence, early screening of patients for such organisms in their bodies is vital to enable hospital preparedness, curtail the spread to other weak patients in hospitals, and limit community outbreaks. Even though predictive models for sepsis and mortality exist, no model has been suggested for the prediction of multidrug-resistant organisms in hematological cancer patients with febrile neutropenia. Hence, for predicting three critical clinical complications, such as sepsis, the presence of multidrug-resistant organisms, and mortality, from the data available from medical records, we used 1166 febrile neutropenia episodes reported in 513 patients. The XGboost algorithm is suggested from 10-fold cross-validation on 6 candidate models. Other highlights are (1) a novel set of easily available features for the prediction of the aforementioned clinical complications and (2) the use of data augmentation methods and model-scoring-based hyperparameter tuning to address the problem of class disproportionality, a common challenge in medical datasets and often the reason behind poor event prediction rate of various predictive models reported so far. The proposed model depicts improved recall and AUC (area under the curve) for sepsis (recall = 98%, AUC = 0.85), multidrug-resistant organism (recall = 96%, AUC = 0.91), and mortality (recall = 86%, AUC = 0.88) prediction. Our results encourage the need to popularize artificial intelligence-based devices to support clinical decision-making.

Funder

Qatar National Research Fund

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3