Urban Flood Modeling and Risk Assessment with Limited Observation Data: The Beijing Future Science City of China

Author:

Xu Huan1,Wang Ying2,Fu Xiaoran13ORCID,Wang Dong4,Luan Qinghua5

Affiliation:

1. College of Water Conservancy and Hydropower, Hebei University of Engineering, Handan 056021, China

2. North China Municipal Engineering Design and Research Institute Co., Ltd., Tianjin 300074, China

3. National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China

4. Hebei Provincial Research Center of Water Ecological Civilization & Social Governance, Handan 056021, China

5. Key Laboratory of Flood Disaster Prevention and Control of the Ministry of Emergency Management in China, Hohai University, Nanjing 210024, China

Abstract

The frequency of urban storms has increased, influenced by the climate changing and urbanization, and the process of urban rainfall runoff has also changed, leading to severe urban waterlogging problems. Against this background, the risk of urban waterlogging was analyzed and assessed accurately, using an urban stormwater model as necessary. Most studies have used urban hydrological models to assess flood risk; however, due to limited flow pipeline data, the calibration and the validation of the models are difficult. This study applied the MIKE URBAN model to build a drainage system model in the Beijing Future Science City of China, where the discharge of pipelines was absent. Three methods, of empirical calibration, formula validation, and validation based on field investigation, were used to calibrate and validate the parameters of the model. After the empirical calibration, the relative error range between the simulated value and the measured value was verified by the formula as within 25%. The simulated runoff depth was consistent with a field survey verified by the method of validation based on field investigation, showing the model has good applicability in the study area. Then, the rainfall scenarios of different return periods were designed and simulated. Simulation results showed that, for the 10-year return period, there are overflow pipe sections in northern and southern regions, and the number of overflow pipe sections in the northern region is more than that in the southern region. For the 20-year return period and 50-year return period, the number of overflow pipe sections and nodes in the northern region increased, while for the 100-year return period, the number of overflow nodes both increased. With the increase in the rainfall return period, the pipe network load increased, the points and sections prone to accumulation and waterlogging increased, and the regional waterlogging risk increased. The southern region is prone to waterlogging because the pipeline network density is higher than that in the northern region and the terrain is low-lying. This study provides a reference for the establishment of rainwater drainage models in regions with similar database limitations and provides a technical reference for the calibration and validation of stormwater models that lack rainfall runoff data.

Funder

Key Research and Development Project of Hebei Province

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3