The Influence of Transtibial Prosthesis Type on Lower-Body Gait Adaptation: A Case Study

Author:

Cherni YosraORCID,Laurendeau Simon,Robert Maxime,Turcot KatiaORCID

Abstract

Gait parameters are altered and asymmetrical in individuals with transtibial amputation. The purpose of this study was to evaluate and compare the effect of four different prosthetic feet on lower-limb biomechanics during gait. A 34-year-old man with transtibial amputation performed four gait analysis sessions with four foot–ankle prostheses (Variflex, Meridium, Echelon, and Kinterra). Kinematic and kinetic parameters and gait symmetry were analyzed in different prosthetic conditions. The type of prosthesis had little effect on the participant’s spatiotemporal parameters. Throughout the stance phase, increased hip angle, reduced knee flexion and ankle dorsiflexion were observed in the amputated leg. For kinetic parameters, reduced propulsive force (SI = 0.42–0.65), reduced knee extension moment (mainly during Echelon and Kinterra conditions, SI = 0.17 and 0.32, respectively), and increased knee abduction moment (mainly during the Variflex and Meridium, SI = 5.74 and 8.93, respectively) were measured in the amputated leg. Lower support moments were observed in the amputated leg as compared to the unaffected leg, regardless of the type of prosthesis (SI = 0.61–0.80). The prostheses tested induced different lower-limb mechanical adaptations. In order to achieve the clinical goal of better gait symmetry between lower limbs, an objective gait analysis could help clinicians to prescribe prosthetic feet based on quantitative measurement indicators to optimize gait rehabilitation.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3