The Mechanism of Aerobic Exercise Regulating the PI3K/Akt-mTOR Signaling Pathway Intervenes in Hippocampal Neuronal Apoptosis in Vascular Dementia Rats

Author:

Gao Lei1ORCID,Liu Fushun2,Liu Ruilian3

Affiliation:

1. Department of Physical Education, Yuzhang Normal University, Nanchang 330103, China

2. Police Sports Department, Zhejiang Police College, Hangzhou 310053, China

3. College of Physical Education, Yichun University, Yichun 336000, China

Abstract

Background: The purpose of this paper is to explore the mechanism of aerobic exercise regulating autophagy through the PI3K/Akt-mTOR signaling pathway and its participation in apoptosis, to protect the hippocampal nerves from damage in vascular dementia rats. Methods: Thirty-six healthy male SD rats were randomly divided into a sham group, a model group, and a model exercise group. A neurobehavioral assessment was used to determine the memory and exploration abilities of the rats. A TUNEL assay was used to detect hippocampal neuron apoptosis. Immunohistochemical and Western blot analyses were used to analyze LC3Ⅱ and the beclin-1 protein. An RT-PCR detected the differential expression of mRNA. Results: The results of the neurobehavioral tests showed that the platform latency time of the rats with vascular dementia was prolonged. Aerobic exercise significantly shortens the swimming time of rats in platform latency. The TUNEL results showed that the TUNEL-positive cells of the hippocampal neurons in the model group increased; the expression of pro-apoptotic genes caspase-3 and Bax mRNA was up-regulated, and the expression of Bcl-2 mRNA was down-regulated. Aerobic exercise reduced hippocampal neuronal apoptosis, up-regulated Bcl-2 mRNA, and down-regulated caspase-3 and Bax mRNA. The LC3Ⅱ and Beclin-1 proteins, detected by immunohistochemistry and a Western blot analysis, showed that the protein expression in the hippocampi of rats with vascular dementia increased. Aerobic exercise reduced LC3Ⅱ and Beclin-1 protein expression. The results of the RT-PCR showed similar changes. Conclusions: Aerobic exercise could improve the learning and memory abilities of vascular dementia rats, moderately regulate the process of autophagy, reduce the TUNEL-positive cells of hippocampal neurons, repair damaged hippocampal neurons by regulating the autophagy signaling pathway PI3K/Akt-mTOR, and improve hippocampal function.

Funder

Jiangxi Provincial Department of Education

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference30 articles.

1. Thioredoxin-1 improving the cognitive function and nerve injury of vascular dementia rats by regulating the IRE1-JNK signaling pathway;Yu;Chin. J. Gerontol.,2020

2. Review: Vascular dementia: Clinicopathologic and genetic considerations;Vinters;Neuropathol. Appl. Neurobiol.,2018

3. Effects of electroacupuncture on ROS-NLRP3 inflammatory pathway and autophagy related proteins in hippocampus of vascular dementia rats;Qiu;Acupunct. Res.,2022

4. FoxO1-mediated autophagy plays an important role in the neuroprotective effects of hydrogen in a rat model of vascular dementia;Jiang;Behav. Brain Res.,2019

5. The autophagosome: Origins unknown, biogenesis complex;Lamb;Nat. Rev. Mol. Cell Biol.,2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3