Evaluation of Skinfold Techniques in People with Down Syndrome: Development of a New Equation

Author:

Nickerson Brett S.1,Esco Michael R.2,Schaefer George3

Affiliation:

1. School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH 43210, USA

2. Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA

3. Department of Kinesiology, Auburn University at Montgomery, Montgomery, AL 36117, USA

Abstract

The primary aim of this study was to evaluate the accuracy of skinfold thickness (SFT) measurements for the estimation of %Fat when compared to dual energy X-ray absorptiometry (DXA) in individuals with Down syndrome (DS). The secondary aim was to develop a new SFT-based body fat equation (SFTNICKERSON). SFT-based %Fat was estimated using a body fat equation from González-Agüero (SFTG-A) and body density conversion formulas from Siri (SFTSIRI) and Brozek (SFTBROZEK). Criterion %Fat was measured via DXA. SFTG-A, SFTSIRI, and SFTBROZEK were significantly lower than DXA (mean differences ranged from −7.59 to −13.51%; all p < 0.001). The SEE values ranged from 3.47% (SFTBROZEK) to 8.60% (SFTG-A). The 95% limits of agreement were greater than ±10% for all comparisons. Mid-axilla and suprailium were significant predictors of %Fat (both p < 0.05). %Fat SFTNICKERSON = 10.323 + (0.661 × mid-axilla) + (0.712 × suprailium). Age and all other skinfold sites were not statically significant in the regression model (all p > 0.05). Current findings indicate that SFTG-A, SFTSIRI, and SFTBROZEK erroneously place an individual with excessive adiposity in a normal healthy range. Accordingly, the current study developed a new equation (SFTNICKERSON) that can easily be administered in people with DS in a quick and efficient time frame. However, further research is warranted in this area.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3