Constraints on the Primordial Curvature Power Spectrum and Reheating Temperature from the NANOGrav 15-Year Dataset

Author:

Fei Qin1

Affiliation:

1. School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China

Abstract

The stochastic signal observed by collaborations such as NANOGrav, PPTA, EPTA +InPTA, and CPTA may originate from gravitational waves induced by primordial curvature perturbations during inflation. This study investigates small-scale properties of inflation and reheating, assuming a log-normal form for the power spectrum of the primordial curvature and a reheating phase equation of state w=1/9. Inflation and reheating scenarios are thoroughly examined using Bayesian methods applied to the NANOGrav 15-year dataset. The analysis establishes constraints on the reheating temperature, suggesting Trh≳0.1Gev, consistent with Big Bang nucleosynthesis constraints. Additionally, the NANOGrav 15-year dataset requires the amplitude (A∼0.1) and width (Δ≲0.001) of the primordial curvature power spectrum to be within specific ranges. A notable turning point in the energy density of scalar-induced gravitational waves occurs due to a change in the equation of state w. This turning point signifies a transition from the reheating epoch to radiation domination. Further observations of scalar-induced gravitational waves could provide insights into the precise timing of this transition, enhancing our understanding of early Universe dynamics.

Funder

National Natural Science Foundation of China

Talent-Introduction Program of Hubei Polytechnic University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3