A Comprehensive Study on the Mid-Infrared Variability of Blazars

Author:

Zhang Xuemei1ORCID,Hu Zhipeng2ORCID,Huang Weitian2,Mao Lisheng2ORCID

Affiliation:

1. School of Mathematics, Yunnan Normal University, Kunming 650500, China

2. Department of Physics, Yunnan Normal University, Kunming 650500, China

Abstract

We present a comprehensive investigation of mid-infrared (MIR) flux variability at 3.4 μm (W1 band) for a large sample of 3816 blazars, using Wide-field Infrared Survey Explorer (WISE) data through December 2022. The sample consists of 1740 flat-spectrum radio quasars (FSRQs), 1281 BL Lac objects (BL Lacs), and 795 blazars of uncertain type (BCUs). Considering Fermi Large Area Telescope detection, we classify 2331 as Fermi blazars and 1485 as non-Fermi blazars. Additionally, based on synchrotron peak frequency, the sample includes 2264 low-synchrotron peaked (LSP), 512 intermediate-synchrotron peaked (ISP), and 655 high-synchrotron peaked (HSP) sources. We conduct a comparative analysis of short- and long-term intrinsic variability amplitude (σm), duty cycle (DC), and ensemble structure function (ESF) across blazar subclasses. The median short-term σm values were 0.181−0.106+0.153, 0.104−0.054+0.101, 0.135−0.076+0.154, 0.173−0.097+0.158, 0.177−0.100+0.156, 0.096−0.050+0.109, and 0.106−0.058+0.100 mag for FSRQs, BL Lacs, Fermi blazars, non-Fermi blazars, LSPs, ISPs, and HSPs, respectively. The median DC values were 71.03−22.48+14.17, 64.02−22.86+16.97, 68.96−25.52+15.66, 69.40−22.17+14.42, 71.24−21.36+14.25, 63.03−33.19+16.93, and 64.63−24.26+15.88 percent for the same subclasses. The median long-term σm values were 0.137−0.105+0.408, 0.171−0.132+0.206, 0.282−0.184+0.332, 0.071−0.062+0.143, 0.218−0.174+0.386, 0.173−0.132+0.208, and 0.101−0.077+0.161 mag for the same subclasses, respectively. Our results reveal significant differences in 3.4 μm flux variability among these subclasses. FSRQs (LSPs) exhibit larger σm and DC values compared to BL Lacs (ISPs and HSPs). Fermi blazars display higher long-term σm but lower short-term σm relative to non-Fermi blazars, while DC distributions between the two groups are similar. ESF analysis further confirms the greater variability of FSRQs, LSPs, and Fermi blazars across a wide range of time scales compared to BL Lacs, ISPs/HSPs, and non-Fermi blazars. These findings highlight a close correlation between MIR variability and blazar properties, providing valuable insights into the underlying physical mechanisms responsible for their emission.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference76 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3