Antibacterial and Photocatalytic Coatings Based on Cu-Doped ZnO Nanoparticles into Microcellulose Matrix

Author:

Bușilă MarianaORCID,Mușat Viorica,Dinică RodicaORCID,Tutunaru Dana,Pantazi AidaORCID,Dorobantu Dorel,Culiță Daniela C.ORCID,Enăchescu MariusORCID

Abstract

The paper presents a successful, simple method for the preparation and deposition of new hybrid Cu-doped ZnO/microcellulose coatings on textile fibers, directly from cellulose aqueous solution. The morphological, compositional, and structural properties of the obtained materials were investigated using different characterization methods, such as SEM-EDX, XRD, Raman and FTIR, as well as BET surface area measurements. The successful doping of ZnO NPs with Cu was confirmed by the EDX and Raman analysis. As a result of Cu doping, the hybrid NPs experienced a phase change from ZnO to (Zn0.9Cu0.1)O, as shown by the XRD results. All the hybrid NPs exhibited a high degree of crystallinity, as revealed by the very sharp reflections in XRD patterns and suggested also by the Raman results. The evaluation of the very low copper-doping (0.1–1 at.%) effect has shown different behavior trends of the hybrid coatings compared with the starting oxide NPs, for MB and MO photodegradation. Continuous increases up to 92% and 60% for MB and MO degradation, respectively, were obtained at maximum 1 at.%-Cu doping coatings. Strong antibacterial activity against S. aureus and E. coli were observed.

Funder

ECSEL JU

REACTION

OCEAN12

Romanian Ministry of Research, Innovation and Digitalization

REACTION–Ctr.

POC-SMIS

OCEAN12–Ctr.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3