Study on the Self-Monitoring of Bending Fatigue Cumulative Damage for Carbon Nanofiber Polyurethane Cement

Author:

Yang Nan,Sun Quansheng

Abstract

Polyurethane cement (PUC) is a kind of high-strength composite bending and strengthening material that is made by adding an appropriate amount of super fine aggregate, such as cement, into the polyurethane matrix. Carbon nanofiber polyurethane cement (CNFPUC) prepared by adding an appropriate amount of carbon nanofiber (CNF) can significantly reduce the resistivity of PUC. In order to reveal the change regulation of electrical resistivity of CNFPUC under fatigue load, the four-point bending fatigue life test of CNFPUC under different temperatures and stress levels was conducted by using a multifunction test device on a mixture of UTM-30 asphalt. The results showed that the resistivity increased slightly with the increase of bending strain in the process of the CNFPUC bending test, which presented a two-stage trend of a small increase and a sharp increase, and the maximum bending tensile stress was up to 26.65 MPa. Under periodic load, the resistivity increased with the increase of stress level and cycle times. When the damage amount reached 90%, the fatigue resistivity increased sharply, and with the increase of stress level, the effect of temperature on resistivity decreased gradually. This study may provide a theoretical basis for practical engineering applications.

Funder

Scientific Research Project of Qiqihar University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3