Simulation of Crop Productivity for Guinea Grass (Megathyrsus maximus) Using AquaCrop under Different Water Regimes

Author:

Terán-Chaves César Augusto1ORCID,Mojica-Rodríguez José Edwin2,Vega-Amante Alexander2,Polo-Murcia Sonia Mercedes2ORCID

Affiliation:

1. Corporación Colombiana de Investigación Agropecuaria—AGROSAVIA, Centro de Investigación Tibaitatá—km 14, Vía Mosquera-Bogotá, Mosquera 250047, Colombia

2. Corporación Colombiana de Investigación Agropecuaria—AGROSAVIA, Centro de Investigación Motilonia—km 5 Vía a Becerril, Agustín Codazzi 202050, Colombia

Abstract

The perennial herbaceous forage crops’ (PHFC) biomass as bioindustry feedstock or source of nutrients for ruminants is very important from their final utilization point of view. In 2022, the AquaCrop-FAO version 7.0 model has been opened for PHFC. In this context, this study aimed to test for the first time the ability of the AquaCrop-FAO model to simulate canopy cover (CC), total available soil water (TAW), and biomass (B) of Guinea grass (Megathyrsus maximus cv. Agrosavia sabanera) under different water regimes at the Colombian dry Caribbean, South America. The water regimes included L1—irrigation based on 80% field capacity (FC), L2—irrigation based on 60% FC, L3—irrigation based on 50% FC, L4—irrigation based on 40% FC, L5—irrigation based on 20% FC, and L6—rainfed. The AquaCrop model uses the normalized water productivity—WP* (g m−2)—to estimate the attainable rate of crop growth under water limitation. The WP* for Guinea grass was 35.9 ± 0.42 g m−2 with a high coefficient of determination (R2 = 0.94). The model calibration results indicated the simulated CC was good (R2 = 0.84, RMSE = 17.4%, NRMSE = 23.2%, EF = 0.63 and d = 0.91). In addition, cumulative biomass simulations were very good (R2 = 1.0, RMSE = 5.13 t ha−1, NRMSE = 8.0%, EF = 0.93 and d = 0.98), and TAW was good (R2 = 0.85, RMSE = 5.4 mm, NRMSE = 7.0%, EF = 0.56 and d= 0.91). During validation, the CC simulations were moderately good for all water regimes (0.78 < R2 < 0.97; 12.0% < RMSE < 17.5%; 15.9% < NRMSE < 28.0%; 0.47 < EF < 0.87; 0.82 < d < 0.97), the cumulative biomass was very good (0.99 < R2 < 1.0; 0.77 t ha−1 < RMSE < 3.15 t ha−1; 2.5% < NRMSE < 21.9%; 0.92 < EF < 0.99; 0.97 < d < 1.0), and TAW was acceptable (0.70 < R2 < 0.90; 5.8 mm < RMSE < 21.7 mm, 7.6% < NRMSE < 36.7%; 0.15 < EF < 0.58 and 0.79 < d < 0.9). The results of this study provide an important basis for future research, such as estimating biomass production of high-producing grasses in tropical environments, yield effects under scenarios of climate variability, and change based on the presented parameterization and considering a wide range of environments and grazing variations.

Funder

Optimización del agua y uso eficiente del suelo para mejorar la producción agropecuaria en escenarios de vulnerabilidad agroclimática del departamento del Cesar

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference55 articles.

1. The Livestock Roles in the Wellbeing of Rural Communities of Timor-Leste;Bettencourt;Rev. Econ. Sociol. Rural.,2015

2. National Administrative Department of Statistics (2022, January 26). Cuentas Nacionales, Available online: https://www.dane.gov.co/index.php/en/30-espanol/cuentas-nacionales.

3. National Administrative Department of Statistics (2022, January 26). Third National Agricultural Census 2014 Colombia, Available online: https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/censo-nacional-agropecuario-2014#9.

4. Proline accumulation and glutathione reductase activity induced by drought-tolerant rhizobacteria as potential mechanisms to alleviate drought stress in Guinea grass;Bashan;Appl. Soil Ecol.,2020

5. Guinea Grass Establishment in South Texas Is Driven by Disturbance History and Savanna Structure;Rhodes;Rangel. Ecol. Manag.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3