Bioactive and Topographically-Modified Electrospun Membranes for the Creation of New Bone Regeneration Models

Author:

Abdelmoneim Dina,Alhamdani Ghsaq M.,Paterson Thomas E.,Santocildes Romero Martin E.,Monteiro Beatriz J. C.,Hatton Paul V.ORCID,Ortega Asencio Ilida

Abstract

Bone injuries that arise from trauma, cancer treatment, or infection are a major and growing global challenge. An increasingly ageing population plays a key role in this, since a growing number of fractures are due to diseases such as osteoporosis, which place a burden on healthcare systems. Current reparative strategies do not sufficiently consider cell-substrate interactions that are found in healthy tissues; therefore, the need for more complex models is clear. The creation of in vitro defined 3D microenvironments is an emerging topographically-orientated approach that provides opportunities to apply knowledge of cell migration and differentiation mechanisms to the creation of new cell substrates. Moreover, introducing biofunctional agents within in vitro models for bone regeneration has allowed, to a certain degree, the control of cell fate towards osteogenic pathways. In this research, we applied three methods for functionalizing spatially-confined electrospun artificial microenvironments that presented relevant components of the native bone stem cell niche. The biological and osteogenic behaviors of mesenchymal stromal cells (MSCs) were investigated on electrospun micro-fabricated scaffolds functionalized with extracellular matrix (ECM) proteins (collagen I), glycosaminoglycans (heparin), and ceramic-based materials (bioglass). Collagen, heparin, and bioglass (BG) were successfully included in the models without modifying the fibrous structures offered by the polycaprolactone (PCL) scaffolds. Mesenchymal stromal cells (MSCs) were successfully seeded in all the biofunctional scaffolds and they showed an increase in alkaline phosphatase production when exposed to PCL/BG composites. This research demonstrates the feasibility of manufacturing smart and hierarchical artificial microenvironments for studying stem cell behavior and ultimately the potential of incorporating these artificial microenvironments into multifunctional membranes for bone tissue regeneration

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3