Abstract
The linear parameter-varying (LPV) model is widely used in aero engine control system design. The conventional local modeling method is inaccurate and inefficient in the full flying envelope. Hence, a novel online data-driven LPV modeling method based on the online sequential extreme learning machine (OS-ELM) with an additional multiplying layer (MLOS-ELM) was proposed. An extra multiplying layer was inserted between the hidden layer and the output layer, where the hidden layer outputs were multiplied by the input variables and state variables of the LPV model. Additionally, the input layer was set to the LPV model’s scheduling parameter. With the multiplying layer added, the state space equation matrices of the LPV model could be easily calculated using online gathered data. Simulation results showed that the outputs of the MLOS-ELM matched that of the component level model of a turbo-shaft engine precisely. The maximum approximation error was less than 0.18%. The predictive outputs of the proposed online data-driven LPV model after five samples also matched that of the component level model well, and the maximum predictive error within a large flight envelope was less than 1.1% with measurement noise considered. Thus, the efficiency and accuracy of the proposed method were validated.
Funder
National Science and Technology Major Project.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献