Author:
Chen Zhiwen,Feng Zheng,Ruan Meng,Xu Guoliang,Liu Li
Abstract
Epoxy molding compounds (EMCs) are commonly used in electronic products for chip encapsulation, but the moisture absorption of EMC can induce significant reliability challenges. In this study, the effects of hygrothermal conditions and structure parameters on moisture diffusion and the consequent influences (such as moisture content on die surfaces and stress distribution) on a system-in-package module have been systematically investigated by moisture–thermal–mechanical-coupled modeling. Hygroscopic tests were carried out on a new commercial EMC at 60 °C/60% RH and 85 °C/85% RH, followed by evaluations of diffusion coefficients by Fick’s law. It was found that the moisture diffusion coefficients and saturation concentrations at 85 °C/85% RH were higher than those at 60 °C/60% RH. From the modeling, it was found that the consequent maximum out-of-plane deformation and stress of the module at 85 °C/85% RH were both higher than those at 60 °C/60% RH. Influences of thicknesses of EMC and PCB on the moisture diffusion behavior have also been studied for design optimization. It was found that the maximum moisture concentration on die surfaces and resultant stress increased notably with thinner PCB, whereas the effects of EMC thickness were limited. This can be attributed to the comparison between the thicknesses of EMC and PCB and the shortest existing diffusion path within the module. These findings can provide helpful insights to the design optimization of electronic modules for hygrothermal conditions.
Funder
National Natural Science Foundation of China
GUANGDONG BASIC AND APPLIED BASIC RESEARCH FOUNDATION
FUNDAMENTAL RESEARCH FUNDS FOR THE CENTRAL UNIVERSITIES
HUBEI PROVINCIAL NATURAL SCIENCE FOUNDATION OF CHINA
NATIONAL KEY R&D PROGRAM OF CHINA
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献