Effects of Moisture Diffusion on a System-in-Package Module by Moisture–Thermal–Mechanical-Coupled Finite Element Modeling

Author:

Chen Zhiwen,Feng Zheng,Ruan Meng,Xu Guoliang,Liu Li

Abstract

Epoxy molding compounds (EMCs) are commonly used in electronic products for chip encapsulation, but the moisture absorption of EMC can induce significant reliability challenges. In this study, the effects of hygrothermal conditions and structure parameters on moisture diffusion and the consequent influences (such as moisture content on die surfaces and stress distribution) on a system-in-package module have been systematically investigated by moisture–thermal–mechanical-coupled modeling. Hygroscopic tests were carried out on a new commercial EMC at 60 °C/60% RH and 85 °C/85% RH, followed by evaluations of diffusion coefficients by Fick’s law. It was found that the moisture diffusion coefficients and saturation concentrations at 85 °C/85% RH were higher than those at 60 °C/60% RH. From the modeling, it was found that the consequent maximum out-of-plane deformation and stress of the module at 85 °C/85% RH were both higher than those at 60 °C/60% RH. Influences of thicknesses of EMC and PCB on the moisture diffusion behavior have also been studied for design optimization. It was found that the maximum moisture concentration on die surfaces and resultant stress increased notably with thinner PCB, whereas the effects of EMC thickness were limited. This can be attributed to the comparison between the thicknesses of EMC and PCB and the shortest existing diffusion path within the module. These findings can provide helpful insights to the design optimization of electronic modules for hygrothermal conditions.

Funder

National Natural Science Foundation of China

GUANGDONG BASIC AND APPLIED BASIC RESEARCH FOUNDATION

FUNDAMENTAL RESEARCH FUNDS FOR THE CENTRAL UNIVERSITIES

HUBEI PROVINCIAL NATURAL SCIENCE FOUNDATION OF CHINA

NATIONAL KEY R&D PROGRAM OF CHINA

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference30 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3