Cost-Sensitive Models to Predict Risk of Cardiovascular Events in Patients with Chronic Heart Failure

Author:

Groccia Maria Carmela1,Guido Rosita1,Conforti Domenico1,Pelaia Corrado2ORCID,Armentaro Giuseppe2,Toscani Alfredo Francesco2,Miceli Sofia2,Succurro Elena2ORCID,Hribal Marta Letizia2ORCID,Sciacqua Angela2

Affiliation:

1. Department of Mechanical, Energy and Management Engineering, University of Calabria, Ponte Pietro Bucci 41C, 87036 Arcavacata di Rende, Italy

2. Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy

Abstract

Chronic heart failure (CHF) is a clinical syndrome characterised by symptoms and signs due to structural and/or functional abnormalities of the heart. CHF confers risk for cardiovascular deterioration events which cause recurrent hospitalisations and high mortality rates. The early prediction of these events is very important to limit serious consequences, improve the quality of care, and reduce its burden. CHF is a progressive condition in which patients may remain asymptomatic before the onset of symptoms, as observed in heart failure with a preserved ejection fraction. The early detection of underlying causes is critical for treatment optimisation and prognosis improvement. To develop models to predict cardiovascular deterioration events in patients with chronic heart failure, a real dataset was constructed and a knowledge discovery task was implemented in this study. The dataset is imbalanced, as it is common in real-world applications. It thus posed a challenge because imbalanced datasets tend to be overwhelmed by the abundance of majority-class instances during the learning process. To address the issue, a pipeline was developed specifically to handle imbalanced data. Different predictive models were developed and compared. To enhance sensitivity and other performance metrics, we employed multiple approaches, including data resampling, cost-sensitive methods, and a hybrid method that combines both techniques. These methods were utilised to assess the predictive capabilities of the models and their effectiveness in handling imbalanced data. By using these metrics, we aimed to identify the most effective strategies for achieving improved model performance in real scenarios with imbalanced datasets. The best model for predicting cardiovascular events achieved mean a sensitivity 65%, a mean specificity 55%, and a mean area under the curve of 0.71. The results show that cost-sensitive models combined with over/under sampling approaches are effective for the meaningful prediction of cardiovascular events in CHF patients.

Funder

Italian Ministry of University and Research

Publisher

MDPI AG

Subject

Information Systems

Reference55 articles.

1. Disease and Injury Incidence and Prevalence Collaborators (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392, 1789–1858.

2. Improving outcomes in heart failure: A personal perspective;McMurray;Eur. Heart J.,2015

3. Natural History of Asymptomatic Left Ventricular Systolic Dysfunction in the Community;Wang;Circ. J. Am. Heart Assoc.,2003

4. Hospitalizations after Heart Failure Diagnosis;Dunlay;J. Am. Coll. Cardiol.,2009

5. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC;Ponikowski;Eur. Heart J.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3