Identification of Drought Stress-Responsive Genes in Rice by Random Walk with Multi-Restart Probability on MultiPlex Biological Networks

Author:

Liu Jiacheng1,Zhu Liu1ORCID,Cao Dan2,Zhu Xinghui1,Zhang Hongyan1,Zhang Yinqiong1,Liu Jing1

Affiliation:

1. College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China

2. College of Science, Central South University of Forestry and Technology, Changsha 410004, China

Abstract

Exploring drought stress-responsive genes in rice is essential for breeding drought-resistant varieties. Rice drought resistance is controlled by multiple genes, and mining drought stress-responsive genes solely based on single omics data lacks stability and accuracy. Multi-omics correlation analysis and biological molecular network analysis provide robust solutions. This study proposed a random walk with a multi-restart probability (RWMRP) algorithm, based on the Restarted Random Walk (RWR) algorithm, to operate on rice MultiPlex biological networks. It explores the interactions between biological molecules across various levels and ranks potential genes. RWMRP uses eigenvector centrality to evaluate node importance in the network and adjusts the restart probabilities accordingly, diverging from the uniform restart probability employed in RWR. In the random walk process, it can be better to consider the global relationships in the network. Firstly, we constructed a MultiPlex biological network by integrating the rice protein–protein interaction, gene pathway, and gene co-expression network. Then, we employed RWMRP to predict the potential genes associated with rice tolerance to drought stress. Enrichment and correlation analyses resulted in the identification of 12 drought-related genes. We further conducted quantitative real-time polymerase chain reaction (qRT-PCR) analysis on these 12 genes, ultimately identifying 10 genes responsive to drought stress.

Funder

Natural Science Foundation of Hunan Province

Scientific Research Foundation of Education Office of Hunan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3