Dynamics and Wake Interference Mechanism of Long Flexible Circular Cylinders in Side-by-Side Arrangements

Author:

Chang Shuqi1,Zhang Luoning1,Zhang Zhimeng12ORCID,Ji Chunning1ORCID

Affiliation:

1. State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300350, China

2. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China

Abstract

The vortex-induced vibrations of two side-by-side flexible cylinders in a uniform flow were studied using a three-dimensional direct numerical simulation at Reynolds number Re = 350 with an aspect ratio of 100, and a center-to-center spacing ratio of 2.5. A mixture of standing-traveling wave pattern was induced in the in-line (IL) vibration, while the cross-flow (CF) vibration displayed a standing-wave characteristic. The ninth vibration mode prominently occurred in both IL and CF directions, along with competition between multiple modes. Proximity effects from the neighboring cylinder caused the primary frequency to be consistent between IL and CF vibrations for each cylinder, deviating from the IL to CF ratio of 2:1 in isolated cylinder conditions. Repulsive mean lift coefficients were observed in both stationary and vibrating conditions for the two cylinders due to asymmetrical vortex shedding in this small gap. Comparatively, lift and drag coefficients were notably increased in the vibrating condition, albeit with a lower vortex shedding frequency. Positive energy transfer was predominantly excited along the span via vortex shedding from the cylinder itself and the neighboring one, leading to increasing lower-mode vibration amplitudes. The flip-flopping (FF) wake pattern was excited in the stationary and vibrating cylinders, causing spanwise vortex dislocations and wake transition over time, with the FF pattern being more regular in the stationary cylinder case.

Funder

National Natural Science Foundation of China

Open Fund of State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3