Ventricular Repolarization and Calcium Transient Show Resonant Behavior under Oscillatory Pacing Rate

Author:

Zaniboni MassimilianoORCID

Abstract

Cardiac EC coupling is triggered by rhythmic depolarizing current fronts originating from the sino-atrial node, and the way variability in rhythm is associated with variability in action potential duration (APD) and, in turn, in the variability of calcium transient amplitude (CTA) and contraction is a key determinant of beating stability. Sinusoidal-varying pacing rate is adopted here in order to establish whether APD and CTA oscillations, elicited in a human ventricular AP model (OR) under oscillatory pacing, are consistent with the dynamics of two coupled harmonic oscillators, e.g., a two-degree-of-freedom system of mass and springs (MS model). I show evidence that this is the case, and that the MS model, preliminarily fitted to OR behavior, retains key features of the physiological system, such as the dependence of APD and CTA oscillation amplitudes from average value and from beat-to-beat changes in pacing rate, and the phase relationship between them. The bi-directionality of coupling between APD and CTA makes it difficult to discriminate which one leads EC coupling dynamics under variable pacing. The MS model suggests that the calcium cycling, with its greater inertia chiefly determined by the SR calcium release, is the leading mechanism. I propose the present approach to also be relevant at the whole organ level, where the need of compact representations of electromechanical interaction, particularly in clinical practice, remains urgent.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3