Mid-Infrared Multispectral Gaseous Stimulated Raman Scattering Laser

Author:

Shen Chencheng,Cai Xianglong,Zheng Tiancheng,Jia Yuxi,Liu Dong,Liu Jinbo,Guo Jingwei

Abstract

We demonstrated mid-infrared gaseous stimulated Raman scattering lasers in free space. Mixed gases of hydrogen and deuterium were used as Raman gain media in one Raman cell. Pumped by laser pulses at 1064 nm, the first Stokes Raman components at 1560 nm and 1907 nm were generated. A four-wave mixing process with the pump laser at 1064 nm and Raman lasers at 1560 nm and 1907 nm contributed to dramatically reducing the threshold of mid-IR laser generation at 4432 nm. The maximum output peak power of a mid-IR laser at 4432 nm reached 121 kW. Furthermore, by scattering on the rotational transition of deuterium, multispectral mid-IR Raman lasers at wavelengths of 2071 nm, 2266 nm, 2604 nm, 2920 nm, 3322 nm, 3743 nm, 4432 nm, and 5431 nm were also generated. Our results show that this is a convenient method to reduce the threshold and achieve a high power output with mid-IR Raman lasers.

Funder

National Natural Science Foundation of China

Innovation Foundation of Key Lab of Chemical Laser

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Laser-Based Mid-Infrared Sources and Applications;Vodopyanov,2020

2. Mid infrared lasers for remote sensing applications

3. Towards high-power mid-infrared emission from a fibre laser

4. Near- and mid-infrared laser-optical sensors for gas analysis

5. Near-unity third-harmonic circular dichroism driven by quasi-bic in asymmetric silicon metasurfaces;Gandolfi;arXiv,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3