Development of a Novel H-Shaped Electrochemical Aptasensor for Detection of Hg2+ Based on Graphene Aerogels–Au Nanoparticles Composite

Author:

Peng Gang1ORCID,Guo Mengxue1,Liu Yuting1,Yang Han1,Wen Zuorui1,Chen Xiaojun2ORCID

Affiliation:

1. College of Food Engineering, Anhui Science and Technology University, Fengyang 233100, China

2. College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China

Abstract

Hg2+, a highly toxic heavy metal, poses significant environmental and health risks, necessitating rapid detection methods. In this study, we employed an electrochemical aptasensor for rapid and sensitive detection of Hg2+ based on DNA strands (H2 and H3) immobilized graphene aerogels-Au nanoparticles (GAs-AuNPs) hybrid recognition interface and exonuclease III (Exo III)-mediated cyclic amplification. Firstly, Gas-AuNPs were modified on the surface of the ITO electrode to form a sensing interface to increase DNA loading and accelerate electron transfer. Then, DNA helper was generated with the addition of Hg2+ via Exo III-mediated cycling. Finally, the hairpin structures of H2 and H3 were opened with the DNA helper, and then the methylene blue (MB) functionalized DNA (A1 and A2) combined with the H2 and H3 to form an H-shaped structure. The current response of MB as an electrochemical probe was proportional to the concentration of Hg2+. Under optimal conditions, the aptasensor showed excellent performance for Hg2+, achieving a linear range from 1 fM to 10 nM and a detection limit of 0.16 fM. Furthermore, the aptasensor was used to detect Hg2+ in spiked milk samples, achieving a high recovery rate and demonstrating promising application prospects.

Funder

Natural Science Research Project for Colleges and Universities of Anhui Province

Anhui Provincial Natural Science Foundation

Talent Introduction Foundation of Anhui Science and Technology University

Natural Science Research Project of Anhui Science and Technology University

Innovation and Entrepreneurship Training Program for College Students

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3