A Combinational Optimization Method for Efficient Production of Indigo by the Recombinant Escherichia coli with Expression of Monooxygenase and Malate Dehydrogenase

Author:

Pan Zijing1,Tao Dejiang1,Ren Mingjing1,Cheng Lei1ORCID

Affiliation:

1. Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China

Abstract

Indigo pigment is a widely used pigment, and the use of biosynthesis to ferment indigo has become a hot research topic. Based on previous research, the indigo could be biosynthesized via the styrene oxygenation pathway, which is regulated by intracellular redox-cofactor rebalancing. In this work, the malate dehydrogenase (mdh) gene was selected as an NADH regeneration element to improve the intracellular cofactor regeneration level, and it was co-expressed with the styrene monooxygenase (styAB) gene by pET-28a(+) vector in E. coli for enhancing indigo production. The PT7 and Pcat promoter was constructed to change the styAB gene and mdh gene from inducible expression to constitutive expression, since the expressing vector pET-28a(+) needs to be induced by IPTG. After different strategies of genetic manipulations, the styAB gene and mdh gene were successfully constitutively co-expressed by different promoters in E. coli, which obviously enhanced the monooxygenase activity and indigo production, as expected. The maximum yield of indigo in recombinant strains was up to 787.25 mg/L after 24 h of fermentation using 2.0 g/L tryptophan as substrate, which was nearly the highest indigo-producing ability using tryptophan as substrate in recent studies. In summary, this work provided a theoretical basis for the subsequent study of indigo biosynthesis and probably revealed a new insight into the construction of indigo biosynthesis cell factory for application.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3