CEBPA-Regulated Expression of SOCS1 Suppresses Milk Protein Synthesis through mTOR and JAK2-STAT5 Signaling Pathways in Buffalo Mammary Epithelial Cells

Author:

Fan Xinyang1ORCID,Qiu Lihua1,Zhu Wei1,Huang Lige1,Tu Xingtiao1,Miao Yongwang1ORCID

Affiliation:

1. Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China

Abstract

Milk protein content is a key quality indicator of milk, and therefore elucidating its synthesis mechanism has been the focus of research in recent years. Suppressor of cytokine signaling 1 (SOCS1) is an important inhibitor of cytokine signaling pathways that can inhibit milk protein synthesis in mice. However, it remains elusive whether SOCS1 plays roles in the milk protein synthesis in the buffalo mammary gland. In this study, we found that the mRNA and protein expression levels of SOCS1 in buffalo mammary tissue during the dry-off period was significantly lower than those during lactation. Overexpression and knockdown experiments of SOCS1 showed that it influenced the expression and phosphorylation of multiple key factors in the mTOR and JAK2–STAT5 signaling pathways in buffalo mammary epithelial cells (BuMECs). Consistently, intracellular milk protein content was significantly decreased in cells with SOCS1 overexpression, while it increased significantly in the cells with SOCS1 knockdown. The CCAAT/enhancer binding protein α (CEBPA) could enhance the mRNA and protein expression of SOCS1 and its promoter activity in BuMECs, but this effect was eliminated when CEBPA and NF-κB binding sites were deleted. Therefore, CEBPA was determined to promote SOCS1 transcription via the CEBPA and NF-κB binding sites located in the SOCS1 promoter. Our data indicate that buffalo SOCS1 plays a significant role in affecting milk protein synthesis through the mTOR and JAK2-STAT5 signaling pathways, and its expression is directly regulated by CEBPA. These results improve our understanding of the regulation mechanism of buffalo milk protein synthesis.

Funder

National Natural Science Foundation of China

the Natural Science Foundation Key Project of Yunnan Province, China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3