Application of a Novel Au@ZIF-8 Composite in the Detection of Bisphenol A by Surface-Enhanced Raman Spectroscopy

Author:

Xie Yunfei123,Dong Xianghui12,Cai Nifei12,Yang Fangwei123,Yao Weirong12,Huang Lijun4

Affiliation:

1. State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China

2. School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China

3. School of Food and Health, Beijing Technology & Business University, 33 Fucheng Road, Haidian District, Beijing 100048, China

4. Wuxi Food Safety Inspection and Test Center, 35-210 Changjiang South Road, Wuxi 214142, China

Abstract

Bisphenol A (BPA) is an endocrine disruptor which is widely present in fish under the influence of environmental pollution. It is essential to establish a rapid detection method for BPA. Zeolitic imidazolate framework (ZIF-8) is a typical metal-organic framework material (MOFs) with a strong adsorption capacity, which can effectively adsorb harmful substances in food. Combining MOFs and surface-enhanced Raman spectroscopy (SERS) can achieve rapid and accurate screening of toxic substances. In this study, a rapid detection method for BPA was established by preparing a new reinforced substrate Au@ZIF-8. The SERS detection method was optimized by combining SERS technology with ZIF-8. The Raman peak at 1172 cm−1 was used as the characteristic quantitative peak, and the lowest detection concentration of BPA was as low as 0.1 mg/L. In the concentration range of 0.1~10 mg/L, the linear relationship between SERS peak intensity and the concentration of BPA was good, and R2 was 0.9954. This novel SERS substrate was proven to have great potential in rapidly detecting BPA in food.

Funder

the Science and Technology Planning Project of the Jiangsu Market Supervision and Administration Bureau

the China Postdoctoral Science Foundation

the Open Project of Engineering Research Center of Dairy Quality and Safety Control Technology of the Ministry of Education of China

the Postdoctoral Research Startup Fee of Jiangnan University

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3