Active Steering Controller for Driven Independently Rotating Wheelset Vehicles Based on Deep Reinforcement Learning

Author:

Lu Zhenggang1,Wei Juyao1ORCID,Wang Zehan1

Affiliation:

1. Institute of Rail Transit, Tongji University, Shanghai 201804, China

Abstract

This paper proposes an active steering controller for Driven Independently Rotating Wheelset (DIRW) vehicles based on deep reinforcement learning (DRL). For the two-axle railway vehicles equipped with Independently Rotating Wheelsets (IRWs), each wheel connected to a wheel-side motor, the Ape-X DDPG controller, an enhanced version of the Deep Deterministic Policy Gradient (DDPG) algorithm, is adopted. Incorporating Distributed Prioritized Experience Replay (DPER), Ape-X DDPG trains neural network function approximators to obtain a data-driven DIRW active steering controller. This controller is utilized to control the input torque of each wheel, aiming to improve the steering capability of IRWs. Simulation results indicate that compared to the existing model-based H∞ control algorithm and data-driven DDPG control algorithm, the Ape-X DDPG active steering controller demonstrates better curving steering performance and centering ability in straight tracks across different running conditions and significantly reduces wheel–rail wear. To validate the proposed algorithm’s efficacy in real vehicles, a 1:5 scale model of the DIRW vehicle and its digital twin dynamic model were designed and manufactured. The proposed control algorithm was deployed on the scale vehicle and subjected to active steering control experiments on a scaled track. The experimental results reveal that under the active steering control of the Ape-X DDPG controller, the steering performance of the DIRW scale model on both straight and curved tracks is significantly enhanced.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference39 articles.

1. Active suspension in railway vehicles: A literature survey;Fu;Railw. Eng. Sci.,2020

2. Goodall, R., and Mei, T.X. (2001, January 8–12). Mechatronic strategies for controlling railway wheelsets with independently rotating wheels. Proceedings of the 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Proceedings (Cat. No.01TH8556), Como, Italy.

3. Design, modeling, and analysis of a railway traction motor with independently rotating wheelsets;Oh;IEEE Trans. Magn.,2018

4. Combined active steering and traction for mechatronic bogie vehicles with independently rotating wheels;Busturia;Annu. Rev. Control,2004

5. Dynamics and control assessment of rail vehicles using permanent magnet wheel motors;Mei;Veh. Syst. Dyn.,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3