Mitogenomic Analysis of Pterioidea (Bivalvia: Pteriomorphia): Insights into the Evolution of the Gene Rearrangements

Author:

Zhang Yu12,Qi Lu1,Li Fengping34,Yang Yi34,Gu Zhifeng34,Liu Chunsheng34,Li Qi12,Wang Aimin34

Affiliation:

1. Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China

2. Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China

3. School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China

4. State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China

Abstract

The complete mitogenomes of Pinctada albina and Pinctada margaritifera were sequenced in this study, with sizes of 23,841 bp and 15,556 bp, respectively. The mitochondrial genome analysis of eight Pterioidea species indicated the existence of gene rearrangements within the superfamily. The ATP8 gene was not detected in the two new mitogenomes, and rrnS was found to be duplicated in P. albina’s mitogenome. The reconstructed phylogeny based on mitogenomes strongly supported the monophyly of Pterioidea and provided robust statistical evidence of the phylogenetic relationships within Pteriomorphia. The analysis of the mitochondrial gene order revealed that of P. margaritifera to be the same as the ancestral order of Pterioidea. The gene orders of the Pterioidea species were mapped to the phylogenetic tree, and the gene rearrangement events were inferred. These results provide important insights that will support future research, such as studies extending the evolutionary patterns of the gene order from P. margaritifera to other species and determining the evolutionary status of Pterioidea within the infraclass Pteriomorphia.

Funder

Key Research and Development Project of Hainan Province

Hainan Provincial Natural Science Foundation of China

Starting Research Fund from the Hainan University

Hainan Province Graduate Innovation Project

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3