Abstract
Building retrofitting plays a key-role in energy saving and a growing interest is focused on insulating materials that allow a reduction in heat loss from envelopes with low thickness, by a process of reducing heating and cooling demand. In this context, a complete characterization of the physical properties of Moroccan natural gypsum materials was carried out. Basic information on the mineralogical, microstructure, thermal, mechanical, and acoustic characteristics of the rocks sampled from two Moroccan regions is provided. It was found that mineralogy, porosity, and water content are the main factors governing the development of the structure and the strength of the samples. The measured values of the porosity were 8.94%, the water content varied between 2.5–3.0% for the two studied typologies, coming from Agadir and Safi, respectively. Gypsum powder was used for fabricating samples, which were investigated in terms of thermal and acoustic performance. Thermal properties were measured by means of a hot disk apparatus and values of conductivity of 0.18 W/mK and 0.13 W/mK were obtained for Agadir and Safi Gypsum, respectively. The acoustic performance was evaluated in terms of absorption coefficient and sound insulation, measured by means of a Kundt’s Tube (ISO 10534-2). The absorption coefficients were slightly higher than the ones of conventional plasters with similar thickness. A good sound insulation performance was confirmed, especially for Safi Gypsum, with a transmission loss-value up to about 50 dB at high frequency.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献