Dynamic Analysis and Extreme Response Evaluation of Lifting Operation of the Offshore Wind Turbine Jacket Foundation Using a Floating Crane Vessel

Author:

Chen MingshengORCID,Yuan Guibo,Li Chun BaoORCID,Zhang Xianxiong,Li LinORCID

Abstract

The jacket is the most widely-used fixed foundation for offshore wind turbines due to its superior strength and low installation cost in relatively deep waters. Floating crane vessels are commonly used to install jacket foundations. However, the dynamic coupling between the jacket and the floating vessel might generate complex dynamic responses under wave action. The complexity of the multi-body system requires comprehensive time-domain simulations and statistical analysis to obtain reliable results, especially for the evaluation of the operational safety of offshore lift installations of a jacket foundation. In this context, this study performs numerical simulations and statistical analyses to predict the extreme responses and the preliminary allowable sea states for guiding the lowering operation of a jacket using a floating crane vessel. First, ANSYS-AQWA is used to obtain the hydrodynamic coefficients of the vessel in the frequency domain. A nonstationary time-domain simulation of jacket lowering with winches is performed to identify several preliminary critical vertical positions of the jacket from the time series in an irregular wave. The extreme responses of a target probability are evaluated by the extreme distribution model after a large number of steady-state time-domain simulations of the critical vertical positions in irregular waves. The most critical vertical position is determined from three preliminary critical vertical positions by comparing the extreme responses. Eigenvalue analysis and spectrum analysis of the most critical vertical position of the jacket are carried out to find the natural periods of the system and the dynamic coupling characteristics between different components. The influence of wave direction, significant wave height, and spectrum peak period on the dynamic responses are also analyzed in the most critical vertical position. Furthermore, the optimal wave direction is determined as the head sea. Preliminary allowable sea states are derived by comparing the calculated dynamic amplification coefficient with the defined operational criteria.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3