A new Dynamic Plasticity and Failure Model for Metals

Author:

Zhou ,Wen

Abstract

A new plasticity and failure model is developed herein for metallic materials subjected to dynamic loadings on the basis of the analysis of some available material test data and previous work. The new model consists of two parts: a strength model and a failure criterion. The strength model takes into consideration both tension and shear stress-strain relationships, as well as the effect of Lode angle, while the failure criterion takes into account both the effects of stress triaxiality and Lode angle. Furthermore, the effects of strain rate and temperature are also catered for in the model. In particular, new non-linear functions are suggested for the effects of strain rate and temperature in the strength model in order to describe accurately the mechanical behavior of metallic materials at very high loading rates and temperature. The new model is compared with available material test data for 2024-T351 aluminum alloy, 6061-T6 aluminum alloy, oxygen free high conductivity (OFHC) copper, 4340 steel, Ti-6Al-4V alloys, and Q235 mild steel in terms of stress–strain curves in both tension and shear, strain rate effect, temperature effect and fracture under different loading conditions. The new model is also compared with the JC constitutive model with the respective JC and BW fracture criteria by conducting numerical simulations of quasi-static smooth and notched bar tensile tests and ballistic perforation tests on 2024-T351 aluminum alloy in terms of cup and cone failure pattern, ballistic limit, residual velocity and failure mode. It transpires that the new plasticity and failure model can be used to predict the response and failure of metallic materials and structures under different loading conditions. It also transpires that the new model is advantageous over the existing models.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3