Abstract
The formation of a corrosion-resistant coating by the hydrothermal method is an effective way to provide significant protection to magnesium alloys. However, it is a challenge to prepare such a coating on magnesium-lithium alloys because of its high chemical activity. Herein, the dual-layer structured corrosion-resistant conversion coating composed with Mg(OH)2 and LiOH was successfully synthesized on Mg-9Li alloy by the optimization of the hydrothermal reaction in deionized water. The coating synthesized at 140 °C for 2 h has the best anti-corrosion performance in all obtained coatings, which has a uniform and compact coating with thickness of about 3 μm. The improvement of the hydrophobicity due to the stacking structure of the surface layer, as well as the barrier effect of its inner compact coating on corrosive media, lead to the excellent anti-corrosion performance of the obtained hydrothermal conversion coating
Funder
Fundamental Research Funds for the Central Universities of Hohai university
National Natural Science Foundation of China
Subject
General Materials Science,Metals and Alloys
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献