The Astroglia Syncytial Theory of Consciousness

Author:

Robertson James M.1

Affiliation:

1. Independent Researcher, 508 27th Avenue South, North Myrtle Beach, SC 29582, USA

Abstract

The neurological basis of consciousness remains unknown despite innumerable theories proposed for over a century. The major obstacle is that empirical studies demonstrate that all sensory information is subdivided and parcellated as it is processed within the brain. A central region where such diverse information combines to form conscious expression has not been identified. A novel hypothesis was introduced over two decades ago that proposed astrocytes, with their ability to interconnect to form a global syncytium within the neocortex, are the locus of consciousness based on their ability to integrate synaptic signals. However, it was criticized because intercellular calcium waves, which are initiated by synaptic activity, are too slow to contribute to consciousness but ideal for memory formation. Although astrocytes are known to exhibit rapid electrical responses in active sensory pathways (e.g., vision), it was technically impossible to determine electrical activity within the astroglia syncytium because of the challenge of separating syncytial electrical responses from simultaneous neuronal electrical activity. Therefore, research on astroglia syncytial electrical activity lagged for over sixty years, until recently, when an ingenuous technique was developed to eliminate neuronal electrical interference. These technical advances have demonstrated that the astroglia syncytium, although massive and occupying the entire neocortex, is isoelectric with minimal impedance. Most importantly, the speed of electrical conductance within the syncytium is as rapid as that of neural networks. Therefore, the astroglia syncytium is theoretically capable of transmitting integrated local synaptic signaling globally throughout the entire neocortex to bind all functional areas of the brain in a timeframe required for consciousness.

Publisher

MDPI AG

Reference164 articles.

1. Agid, Y., and Magistretti, P. (2021). Glial Man: A Revolution in Neuroscience, Oxford University Press. [1st ed.].

2. Tripartite synapses: Glia, the unacknowledged partner;Araque;Trends Neurosci.,1999

3. Connexin 30 sets synaptic strength by controlling astroglial synapse invasion;Pannasch;Nat. Neurosci.,2014

4. Peters, A., Palay, S.L., and Webster, H.d.F. (1991). The Fine Structure of the Nervous System, Oxford University Press. [3rd ed.].

5. Three-dimensional relationships between hippocampal synapses and astrocytes;Ventura;J. Neurosci.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3