Toolbox for Genetic Transformation of Non-Conventional Saccharomycotina Yeasts: High Efficiency Transformation of Yeasts Belonging to the Schwanniomyces Genus

Author:

Matanović Angela,Arambašić Kristian,Žunar BojanORCID,Štafa AnamarijaORCID,Svetec Miklenić Marina,Šantek BožidarORCID,Svetec Ivan-KrešimirORCID

Abstract

Non-conventional yeasts are increasingly being investigated and used as producers in biotechnological processes which often offer advantages in comparison to traditional and well-established systems. Most biotechnologically interesting non-conventional yeasts belong to the Saccharomycotina subphylum, including those already in use (Pichia pastoris, Yarrowia lypolitica, etc.), as well as those that are promising but as yet insufficiently characterized. Moreover, for many of these yeasts the basic tools of genetic engineering needed for strain construction, including a procedure for efficient genetic transformation, heterologous protein expression and precise genetic modification, are lacking. The first aim of this study was to construct a set of integrative and replicative plasmids which can be used in various yeasts across the Saccharomycotina subphylum. Additionally, we demonstrate here that the electroporation procedure we developed earlier for transformation of B. bruxellensis can be applied in various yeasts which, together with the constructed plasmids, makes a solid starting point when approaching a transformation of yeasts form the Saccharomycotina subphylum. To provide a proof of principle, we successfully transformed three species from the Schwanniomyces genus (S. polymorphus var. polymorphus, S. polymorphus var. africanus and S. pseudopolymorphus) with high efficiencies (up to 8 × 103 in case of illegitimate integration of non-homologous linear DNA and up to 4.7 × 105 in case of replicative plasmid). For the latter two species this is the first reported genetic transformation. Moreover, we found that a plasmid carrying replication origin from Scheffersomyces stipitis can be used as a replicative plasmid for these three Schwanniomyces species.

Funder

Croatian Science Foundation

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3