Abstract
Improving the detection efficiency and maintenance benefits is one of the greatest challenges in road testing and maintenance. To address this problem, this paper presents a method for combining the you only look once (YOLO) series with 3D ground-penetrating radar (GPR) images to recognize the internal defects in asphalt pavement and compares the effectiveness of traditional detection and GPR detection by evaluating the maintenance benefits. First, traditional detection is conducted to survey and summarize the surface conditions of tested roads, which are missing the internal information. Therefore, GPR detection is implemented to acquire the images of concealed defects. Then, the YOLOv5 model with the most even performance of the six selected models is applied to achieve the rapid identification of road defects. Finally, the benefits evaluation of maintenance programs based on these two detection methods is conducted from economic and environmental perspectives. The results demonstrate that the economic scores are improved and the maintenance cost is reduced by $49,398/km based on GPR detection; the energy consumption and carbon emissions are reduced by 792,106 MJ/km (16.94%) and 56,289 kg/km (16.91%), respectively, all of which indicates the effectiveness of 3D GPR in pavement detection and maintenance.
Funder
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities
Jiangsu Provincial Department of Transport
Jiangsu nature science foundation under Grant
Subject
General Earth and Planetary Sciences
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献