UAV Photogrammetry in Intertidal Mudflats: Accuracy, Efficiency, and Potential for Integration with Satellite Imagery

Author:

Chen Chunpeng12ORCID,Tian Bo1,Wu Wenting3,Duan Yuanqiang1,Zhou Yunxuan1ORCID,Zhang Ce24ORCID

Affiliation:

1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China

2. Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK

3. Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, National & Local Joint Engineering Research Center of Satellite Geospatial Information Technology, Fuzhou University, Fuzhou 350108, China

4. UK Centre for Ecology & Hydrology, Library Avenue, Lancaster LA1 4AP, UK

Abstract

The rapid, up-to-date, cost-effective acquisition and tracking of intertidal topography are the fundamental basis for timely, high-priority protection and restoration of the intertidal zone. The low cost, ease of use, and flexible UAV-based photogrammetry have revolutionized the monitoring of intertidal zones. However, the capability of the RTK-assisted UAV photogrammetry without ground control points, the impact of flight configuration difference, the presence of surface water in low-lying intertidal areas on the photogrammetric accuracy, and the potential of UAV/satellite Synergy remain unknown. In this paper, we used an RTK-assisted UAV to assess the impact of the above-mentioned considerations quantitatively on photogrammetric results in the context of annual monitoring of the Chongming Dongtan Nature Reserve, China based on an optimal flight combination. The results suggested that (1) RTK-assisted UAVs can obtain high-accuracy topographic data with a vertical RMSE of 3.1 cm, without the need for ground control points. (2) The effect of flight altitude on topographic accuracy was most significant and also nonlinear. (3) The elevation obtained by UAV photogrammetry was overestimated by approximately 2.4 cm in the low-lying water-bearing regions. (4) The integration of UAV and satellite observations can increase the accuracy of satellite-based waterline methods by 51%. These quantitative results not only provide scientific insights and guidelines for the balance between accuracy and efficiency in utilizing UAV-based intertidal monitoring, but also demonstrate the great potential of combined UAV and satellite observations in identifying coastal erosion hotspots. This establishes high-priority protection mechanisms and promotes coastal restoration.

Funder

Natural Environment Research Council

project “Coping with Deltas in Transition” within the Programme of Strategic Scientific Alliances between China and the Netherlands

Ministry of Science and Technology of the People’s Republic of China

China Scholarship Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3