Grid-Impedance-Based Transient Current Control for Offshore Wind Turbines under Low-Voltage Fault

Author:

Yang Zhichao1,Gao Bingtuan1,Cao Zeyu1,Fang Jinyuan1

Affiliation:

1. School of Electrical Engineering, Southeast University, Nanjing 210096, China

Abstract

In order to enhance the transient stability of offshore wind turbines (OWTs) in marine energy systems, the grid codes stipulate that OWTs should possess the low-voltage ride-through (LVRT) ability of being grid-tied and injecting reactive current during grid fault. However, the grid-side converter (GSC) of OWTs may lose stability under weak grid or severe fault conditions due to inaccurate current references. To address this issue, a novel transient current control method is proposed to improve the transient stability of permanent-magnet-synchronous-generator (PMSG)-based OWTs. The feature of DC-link overvoltage is investigated and is alleviated by utilizing the GSC’s overcurrent capacity and chopper. Additionally, the equivalent circuit of the PMSG-based OWT connected to the onshore grid is derived based on Thevenin’s theorem. The feasible current region (FCR) is then determined, taking into account the GSC capacity, pre-fault power ability, LVRT requirement, and synchronization stability. Furthermore, a grid-impedance-based transient current control method is designed to enhance the fault ride-through performance and mitigate power oscillation of the OWT under various transient grid impedance and fault conditions. Finally, a simulation model is conducted using PSCAD v4.6.3 software to validate the effectiveness of the proposed method.

Funder

Science and Technology Project of State Grid Corporation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3