Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey

Author:

Srinivasan Sabarathinam1ORCID,Kumarasamy Suresh2ORCID,Andreadakis Zacharias E.3ORCID,Lind Pedro G.456ORCID

Affiliation:

1. Laboratory of Complex Systems Modelling and Control, Faculty of Computer Science, HSE, National Research University, Moscow 109028, Russia

2. Centre for Computational Modeling, Chennai Institute of Technology, Chennai 600069, India

3. Faculty of Technology, Art and Design, OsloMet—Oslo Metropolitan University, N-0130 Oslo, Norway

4. Department of Computer Science, OsloMet—Oslo Metropolitan University, N-0130 Oslo, Norway

5. Artificial Intelligence Lab, OsloMet—Oslo Metropolitan University, N-0166 Oslo, Norway

6. NordSTAR—Nordic Center for Sustainable and Trustworthy AI Research, Pilestredet 52, N-0166 Oslo, Norway

Abstract

To face the impact of climate change in all dimensions of our society in the near future, the European Union (EU) has established an ambitious target. Until 2050, the share of renewable power shall increase up to 75% of all power injected into nowadays’ power grids. While being clean and having become significantly cheaper, renewable energy sources (RES) still present an important disadvantage compared to conventional sources. They show strong fluctuations, which introduce significant uncertainties when predicting the global power outcome and confound the causes and mechanisms underlying the phenomena in the grid, such as blackouts, extreme events, and amplitude death. To properly understand the nature of these fluctuations and model them is one of the key challenges in future energy research worldwide. This review collects some of the most important and recent approaches to model and assess the behavior of power grids driven by renewable energy sources. The goal of this survey is to draw a map to facilitate the different stakeholders and power grid researchers to navigate through some of the most recent advances in this field. We present some of the main research questions underlying power grid functioning and monitoring, as well as the main modeling approaches. These models can be classified as AI- or mathematically inspired models and include dynamical systems, Bayesian inference, stochastic differential equations, machine learning methods, deep learning, reinforcement learning, and reservoir computing. The content is aimed at the broad audience potentially interested in this topic, including academic researchers, engineers, public policy, and decision-makers. Additionally, we also provide an overview of the main repositories and open sources of power grid data and related data sets, including wind speed measurements and other geophysical data.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3