Cross-Investigation on Copper Nitroprusside: Combining XRD and XAS for In-Depth Structural Insights

Author:

Mullaliu AngeloORCID,Aquilanti Giuliana,Plaisier Jasper RikkertORCID,Giorgetti MarcoORCID

Abstract

The emerging energy demand and need to develop sustainable energy storage systems have drawn extensive attention to fundamental and applied research. Anion redox processes were proposed in cathodic materials in addition to traditional transition metal redox to boost the specific capacity and the electrochemical performance. Alternatively, copper nitroprusside (CuNP) features an electroactive nitrosyl ligand alongside the two structural metals (Fe, Cu), representing an alternative to anion redox in layered oxides. Here, a deep structural investigation is carried out on CuNP by complementing the long-range order sensitivity of X-ray diffraction (XRD) and the local atomic probe of X-ray absorption (XAS). Two different CuNP materials are studied, the hydrated and dehydrated forms. A new phase for hydrated CuNP not reported in the literature is solved, and Rietveld refined. The XAS spectra of the two materials at the Cu and Fe K-edges show a similar yet different atomic environment. The extended XAS spectra (EXAFS) analysis is accomplished by considering three- and four-body terms due to the high collinearity of the atomic chains and gives accurate insight into the first-, second-, and third-shell interatomic distances. Both materials are mounted in Li-ion and Na-ion cells to explore the link between structure and electrochemical performance. As revealed by the charge/discharge cycles, the cyclability in Na-ion cells is negatively affected by interstitial water. The similarity in the local environment and the electrochemical differences suggest a long-range structural dependence on the electrochemical performance.

Funder

Università di Bologna

Publisher

MDPI AG

Subject

Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3