Influence of γ-Irradiation on the Electronic Structure and the Chemical and Mechanical Properties of Poly(hydroxybutyrate-valerate)/Poly(caprolactone) Blends: Insights from Experimental Data and Computational Approaches

Author:

Rosario Francisco1,Almirão de Jesus João Paulo2,Casarin Suzan Aline3,La Porta Felipe de Almeida24ORCID

Affiliation:

1. Department of Materials Science and Engineering, Federal University of Technology—Paraná, Londrina 86036–370, Paraná, Brazil

2. Post-Graduation Program in Chemistry, State University of Londrina, Rodovia Celso Garcia Cid, 445, km 380, Londrina 86057-970, Paraná, Brazil

3. Department of Materials Science and Engineering, Federal University of São Carlos, Rod. Washington Luiz, s/n—Monjolinho, São Carlos 13565-905, São Paulo, Brazil

4. Laboratory of Nanotechnology and Computational Chemistry, Department of Chemistry, Federal University of Technology—Paraná, Londrina 86036–370, Paraná, Brazil

Abstract

In this study, we investigated the influence of γ-irradiation (0, 50, and 100 kGy) doses on the chemical and mechanical properties of biodegradable poly(hydroxybutyrate-valerate)/poly(caprolactone) (PHBV/PCL) polymer blends rich in low-molar-mass PCL, which were prepared using a co-rotating twin-screw extruder. In parallel, the density functional theory (DFT) and the time-dependent DFT (TD-DFT) methods were used together with a model containing four monomer units to provide an insight into the electronic structure, chemical bonds, and spectroscopic (such as Nuclear Magnetic Resonance (NMR) and Ultraviolet-visible (UV-vis)) properties of PHBV and PCL blend phases, which are critical for predicting and designing new materials with desired properties. We found that an increase in γ-irradiation doses caused splitting instead of crosslinks in the polymer chains, which led to evident deformation and an increase in tensile strength at break of 2.0 to 5.7 MPa for the PHBV/PCL blend. Further, this led to a decrease in crystallinity and proved the occurrence of a more favorable interaction between the blend phases.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3