Spalling Resistance of Fiber-Reinforced Ultra-High-Strength Concrete Subjected to the ISO-834 Standard Fire Curve: Effects of Thermal Strain and Water Vapor Pressure

Author:

Lee TaegyuORCID,Kim GyuyongORCID,Choe Gyeongcheol,Hwang Euichul,Lee Jaesung,Ryu DongwooORCID,Nam Jeongsoo

Abstract

The prevention and mitigation of spalling in high-strength concrete (HSC) rely on mixing polypropylene (PP) as an additive reinforcement. The dense internal structures of ultra-high-strength concrete (UHSC) result in risks associated with a high thermal stress and high water vapor pressure. Herein, the effects of pore formation and thermal strain on spalling are examined by subjecting fiber-laden UHSC to conditions similar to those under which the ISO-834 standard fire curve was obtained. Evaluation of the initial melting properties of the fibers based on thermogravimetric analysis (TGA) and differential thermal analysis (DTA) demon strated that although nylon fibers exhibit a higher melting point than polypropylene and polyethylene fibers, weight loss occurs below 200 °C. Nylon fibers were effective at reducing spalling in UHSC compared to polypropylene and polyethylene fibers as they rapidly melt, leading to pore formation. We anticipate that these results will serve as references for future studies on the prevention of spalling in fiber-reinforced UHSC.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3